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Force measurements were conducted in a pressurized wind tunnel from subcritical 
up to transcritical Reynolds numbers 2.3 x lo4 < Re < 7.1 x lo6 without changing 
the experimental arrangement. The steady and unsteady forces were measured by 
means of a piezobalance, which features a high natural frequency, low interferences 
and a large dynamic range. I n  the critical Reynolds-number range, two discontinuous 
transitions were observed, which can be interpreted as bifurcations a t  two critical 
Reynolds numbers. I n  both cases, these transitions are accompanied by critical 
fluctuations, symmetry breaking (the occurrence of a steady lift) and hysteresis. In  
addition, both transitions were coupled with a drop of the C, value and a jump of 
the Strouhal number. Similar phenomena were observed in the upper transitional 
region between the super- and the transcritical Reynolds-number ranges. The 
transcritical range begins a t  about Re x 5 x lo6, where a narrow-band spectrum is 
formed with Sr(Re = 7.1 x lo6) = 0.29. 

1. Introduction 
The flow around a circular cylinder is a classical problem of fluid dynamics, 

knowledge of which is essential for basic understanding as well as for technical 
applications. Flow-induced forces which are coupled with formation of the vortex 
street behind the cylinder, particularly in the case of very high Reynolds numbers, 
are important in technical applications. Because i t  is difficult to achieve very high 
Reynolds numbers in a wind-tunnel experiment, there are only a few investigations 
for Re 2 5 x lo6 in incompressible flow. Interest was drawn to the very high Reynolds- 
number range by Roshko (1961), who detected the reappearance of definite vortex 
shedding in this range, which he called transcritical. Up to that time it  was believed 
that, after the boundary-layer transition in the critical range, the regular vortex 
shedding would cease and that, for a Reynolds number approaching infinity, the flow 
past a circular cylinder would approach chaotic state. The following investigations 
performed by Achenbach (1968), Jones, Chincotta & Walker (1969) and James, Paris 
& Malcolm (1980) confirmed Roshko’s findings and thus extended our knowledge of 
the transcritical range, but the cylinders used were too large or the velocities too high. 
As a consequence of blockage or compressibility effects, the scatter of the measured 
quantities was rather high. I n  addition, the essential question concerning the physical 
reasons for the reappearance of an ordered flow pattern a t  very high Reynolds 
numbers remains open. 

Apart from the transcritical range, the observed phenomena and the experimental 
results down to subcritical Reynolds number Re x lo5 are quite different. One reason 
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for this is that, especially a t  critical and supercritical Reynolds numbers, sensitivity 
of the flow to even the smallest perturbations, caused for example by test conditions, 
is very high. The second reason is the fact that, besides the Reynolds number, the 
stability of the flow is influenced by additional parameters such as turbulence 
intensity of the wind tunnel, Mach number and surface roughness. 

I n  the critical range, asymmetric flow separation coupled with steady lift was 
observed (Kraemer 1964; Bearman 1969; Kamiya, Suzuki & Nishi 1979), which is 
probably caused by a one-sided laminar separation bubble (Bearman). The measured 
lift force had consistently the same sign (Kraemer ; Bearman) or always the same sign 
for increasing and the opposite for decreasing Reynolds number (Kamiya et aZ.). These 
findings suggest the question whether such phenomena are fundamental or caused 
by asymmetric test conditions. The present study will demonstrate that the 
phenomenon is fundamental, because it was found that the occurrence of both signs 
for the steady lift is possible. Beyond a critical Reynolds number the symmetric flow 
pattern becomes unstable against an asymmetric flow pattern. This transition from 
a symmetric to an asymmetric flow state can be interpreted as a subcritical 
bifurcation. The abrupt disappearance of the asymmetric flow state can be explained 
in a similar manner. 

The present force measurements were conducted in a new wind tunnel in Gottingen, 
which can be pressurized up to 100 bar; thus the obtainable Reynolds number is very 
high. Measurements were taken from subcritical up to  transcritical Reynolds 
numbers without changing the cylinder (blockage 10 %) or any other component of 
the experimental arrangement. Owing to the large range and the high ambient 
pressure, development of a new force balance able to cope with the extreme demands 
in the high-pressure wind tunnel was necessary. This new balance based on 
piezoelectric-multicomponent force elements features a high natural frequency, a 
large dynamic range and low interferences. Using the high-pressure wind tunnel in 
conjunction with the piezobalance, i t  is possible to overlap the individual Reynolds 
number ranges by merely varying the flow parameters. 

2. Experimental arrangement 
2.1. The high-pressure wind tunnel 

The high-pressure wind tunnel is described in detail by Forsching, Melzer & Schewe 
(1981). The entire wind tunnel, which is of closed-return type, can be pressurized up 
to 100 bar and its closed square test section measures 0.6 x 0.6 m. The test section 
(length 1 m) has four slots (width 0.01 m), one in each corner. With a maximum flow 
velocity of about u, = 38 m/s and maximum pressure of p = 100 bar, a Reynolds 
number of Re = 1.2 x lo7 may be reached. The maximum diameter of the circular 
cylinder in this case is 0.06 m, yielding a geometric blockage of 10 yo. The minimum 
Reynolds number is about Re = lo4 a t  atmospheric pressure and u, zi 3 m/s. Thus 
a variation of three orders of magnitude for the Reynolds number is possible. The 
turbulence intensity of the free stream increases slightly with the Reynolds number 
and is less than 0.4 yo. For all measurements the same circular cylinder was used with 
a diameter D = 0.06 m and a length L = 0.6 m (aspect ratio L I D  = 10). The surface 
of the cylinder was painstakingly finished and finally polished. 

2.2. The piezobalance 
The difficulty of measuring unsteady forces is attributable to the fact that  the 
balance/model system is basically an accelerometer whose resonance frequencies lie 
in the frequency range of interest, especially in the case of strain-gauge balances. 
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FIQURE 1. Schematic drawing of the arrangement of the balance : (A) 3-component load 
washer; (B) force-conducting top plate; (C) wall of the test-section, U-flow direction. 

Therefore the new balance is based on 3-component piezoelectric force-measuring 
elements (Kistler Instrumente, Type 9067), which were modified by the manufacturer 
for use up to 100 bar. As illustrated by figure 1, the balance is constructed of four 
load washers. With the aid of elastic bolts and a common top plate (B) ,  two load 
washers are pressed to each vertical wall (C) of the test section, so that the shear forces 
on the load washers can be transmitted by friction. The freely suspended test cylinder 
is then passed through the wall and clamped on both sides onto the force-conducting 
top plate (B) .  There is a small gap (0.5 mm) between the surface of the cylinder and 
the hole in the wall of the test section. Thus a slight flow leakage is unavoidable. 

Using a charge amplifier (Kistler Type 9007) the effective measuring time for 
quasistatic measurements is limited by the exponential decay of the charge with time 
constants of 103-106 s (depending on measuring range), and leakage currents in the 
charge amplifier. Both effects cause the zero point to drift. If for example the time 

yo (referring to an error of 1 %) is defined, then a value of TI yo = 17 min was obtained 
for a static load of F = 25 N. Quasistatic measurements are possible down to about 
5 N and with reduced accuracy to 1 N. The maximum load can be 10 kN where the 
threshold for dynamic measurements is as low as 0.01 N. Interference between the 
drag Fz and the lift & and vice versa is lower than 1 yo. Because of the high rigidity 
of the quartz elements themselves, the natural frequency of the balance is determined 
by the cylinder which connects both parts of the balance. The lowest eigenfrequency 
was f = 385 Hz for the F, component, where f = 180 Hz was the highest measured 
vortex-shedding frequency in the present experiments. For more details concerning 
the balance see Schewe (1982). 

Evaluation of the signals was performed by means of a Nicolet 660 B FFT analyser 
and a digital computer equipped with an analog-to-digital converter. 
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3. Experimental results 
The measurements were taken from sub- up to transcritical Reynolds numbers 

2.3 x lo4 d Re d 7.1 x lo6 without changing the experimental setup. The flow para- 
meters were varied as follows: 1 bar < p < 51 bar and 4 m/s < u, < 38 m/s. The 
present experiments were not extended up to  100 bar because of difficulties with the 
corrugated hoses in which the measuring cables are led out of the wind tunnel. The 
nomenclature for the different Reynolds-number ranges is that  proposed by Roshko 
(1961). None of the results presented here have been corrected for wind-tunnel 
blockage effects. The likely extent of corrections will be discussed in 3 3.1.1. 

3.1. Reynolds-number range from 2 x lo4 up  to 7 x lo6 
3.1.1. The drag coeficient 

In  figure 2 (c) the C, values are plotted against Re. The results match the classical 
measurements (Wieselsberger 1923) except for the somewhat steeper decrease of the 
curve for Re < 5 x lo4. We will refer to this point in 53.1.4. I n  the critical range there 
are two discontinuous drops of C, ( A  and B )  in the supercritical state, which begins 
atRe = 3.5 x 105.TheCDvalueisnearlyconstantuptoaboutRe w 106withCD = 0.22. 
The remarkable feature of this supercritical range is its extent up to Re w lo6, which 
is probably an indication for good test conditions. Behind a second transitional range 
(lo6 5 Re 5 5 x 1O6),inwhichC,isincreasingagain, thereisafurtherplateauwhereC, 
is nearly constant with C, = 0.52 (transcritical range; Re 5 x lo6). The agreement 
with Jones et al. (1969) is good. I n  comparison with other known results in the trans- 
critical range, there seems to be no significant correlation between the aspect ratio 
LID and the measured drag coefficients. Although Roshko (1961) and Jones et al. 
(1969) used the same aspect ratio ( L I D  = 5), t h y  measured C ,  = 0.7 and G, = 0.5 
respectively. The higher C, value measured by Roshko (1961) and Achenbach & 
Heinecke (1981) are probably caused by higher surface roughness, as was found by 
Roshko (1  970). 

Finally, we make an estimate as to the likely extent of wind-tunnel blockage effects. 
The method of Allen and Vincenti (see e.g. Roshko 1961) was applied to the present 
measurements. The measured values are denoted by an  asterisk (u* and C;). In  the 
subcritical state the required correction for the velocity and drag coefficients would 
be u/u* = 1.04 and C,/C; = 0.92; in the supercritical state u/u*  = 1.01 and 
C,,/CT, = 0.96, and in the transcritical state u/u*  = 1.02 and C,/CT, = 0.95. The 
above corrections are slightly too high since the method is valid for a closed test 
section, whereas our wind tunnel has four small slots. None of the results presented 
here, however, have been corrected for the reason that there is no method valid for 
such a large Reynolds-number range in which the separation point moves. Further, 
we know of no method for correcting fluctuating force measurements. 

3.1.2. Measurement of Strouhal numbers 

I n  Figure 2 ( b )  the Strouhal numbers Sr = f D / u m  are plotted against Re with f as 
the frequency of the lift fluctuations. They were obtained from the power spectra 
G L ( f )  of the lift fluctuations. In  the case of a single narrow peak in the power 
spectrum, the Strouhal number is identical with the vortex-shedding frequency. This 
is valid outside the transitional regimes. The meaning of the Strouhal number in the 
critical regime and the upper transition should become clearer in the discussion of 
the appropriate power spectra. I n  the subcritical range the Strouhal number amounts 
to  Sr = 0.2 and the scatter of the measured values is very low. The critical range 
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Achenbach & Heinecke (1981) obtained Sr x 0.25 at Re = 4 x los, where the trans- 
critical range is just beginning. The Strouhal numbers measured by James et al. (1980) 
are lower than the present ones and exhibit a large scatter with Sr = 0.22 f 0.02. 

3.1.3. Power spectra of the lift Jluctuations 
Figure 3 illustrates six power spectra GL( f) of the lift fluctuations, which belong 

to the individual Reynolds-number ranges. The five spectra (figures 3 a-e) demonstrate 
the unique option offered by a wind tunnel with variable density. The Reynolds 
number was changed only by varying the properties of the fluid, while the flow 
velocity and the geometrical parameters remained nearly constant (1 bar < p < 51 
bar; u ,  = 32 0.5 m/s). The spectrum (figure 3f) was taken a t  the highest Reynolds 
number reached, Re = 7.1 x lo6 (u, = 38 m/s; p = 51 bar). The abscissa has a 
Strouhal-number scale and the ordinate was dimensionalized such that the integral 
of the spectrum results in the mean square of the lift coefficient cL: 

where q, is the dynamic pressure and A the area of the cylinder. 
Because of this normalization, all spectra are comparable with respect to their 

characteristic shape, effective width of the peaks or other features. No corrections 
or other manipulations have been applied to the spectra. Disturbances (dotted lines) 
which are evident in figures 3 ( M )  are probably caused by vibrations of the entire 
wind tunnel. Figure 3 ( a )  shows a narrowband spectrum (Sr = 0.2) taken a t  subcritical 
Reynolds number Re = 1.3 x lo5. The second spectrum (figure 3b) is characteristic 
for supercritical Reynolds numbers with a remarkably narrow peak even at 
Re = 7 x lo5. The state of the flow seems to be very stable, as indicated by the absence 
of low-frequency fluctuations. The Strouhal number nearly has its maximal value 
Sr = 0.47, which is probably related to the previous findings that C, is constant 
(minimal) up to Re x lo6. 

In  the upper transitional range lo6 5 Re 5 5 x lo6 there is no typical spectrum. The 
example presented here (figure 3c) recorded at Re = 1.9 x lo6 has two broad maxima. 
The centroid of the area of the low-frequency part is located a t  about Sr x 0.1. The 
small broad maximum at Sr = 0.42probably corresponds to the supercritical flow state 
and has nearly disappeared. In  this case for example, where the peaks in the spectrum 
are not sharp, the Strouhal number cannot be considered a vortex-shedding 
frequency. The measured spectra in this upper transition are dissimilar with respect 
to their characteristic shape. Apart from this spectrum there are spectra with 
monotonically decreasing GL( f) from low up to higher frequencies without any 
marked feature. Another type of spectrum was characterized by a pronounced 
maximum a t  Sr x 0.1 and monotonically decreasing GL(f) for increasing f. In  the range 
lo6 ,< Re ,< 2 x lo6 steady lift forces up to ICLI/C, x 0.4 (both signs possible) were 
observed, which were often coupled with a broad maximum in the power spectrum 
a t  about Sr x 0.1. So far no definite correlations between an occurrence of lift 
(asymmetric flow state), the CD value and the feature of the power spectrum could 
be found. 

The power spectra in figures 3 ( e ,  f) are typical for very high Reynolds numbers 
Re 2 5 x lo6. The development to the narrow peak (figure 3 f) is as follows. Beginning 
at about Re = 2.5 x lo6, a reproducible broad maximum is formed (figure 3d) whose 
Strouhal number increases slightly with increasing Reynolds number (figure 2 6 ) .  The 
presence of low-frequency fluctuations with high intensity indicates that the end of 
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FIGURE 3. Power spectra of the lift fluctuations ( A  = LD). (a)  Subcritical; Re = 1.3 x lo6, p = 
1 bar, u, = 32 m/s. ( b )  Supercritical; Re = 7.2 x lo5, p = 6 bar, u, = 32 m/s. (c) Transition super- 
to transcritical; Re = 1.9 x los; p = 15 bar, u, = 32 m/s. (d )  Near the end of the upper transition; 
Re = 3.7 x lo6, p = 30 bar, u, = 32 m/s. ( e )  Beginning of the transcritical range; Re = 5.9 x lo6, 
p = 51 bar, u, = 32 m/s. (f)  Transcritical; Re = 7.1 x lo6, p = 51 bar, u, = 38 m/s. 
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the transitional regime is not yet reached. Beginning with about Re x 5.5 x lo6 a new 
peak at about Sr x 0.27 is continuously growing (figures 3e, f ) .  With increasing 
Reynolds number the new peak becomes higher and narrower with a corresponding 
slight increase of the Strouhal number (figure 2b) and the broad maximum becomes 
smaller down to the residual peak a t  Sr = 0.26 (figure 3f). Finally the small jump 
of Sr a t  Re x 5 x  lo6 results from the fact that  the power spectrum for 
2.5 x lo6 5 Re 5 7 x 106exhibitstwoparts.ForRe < 5 x lo6 thebroadbandmaximum 
dominates a t  LSr x 0.2, where the range Re > 5 x lo6 is dominated by the newly 
developed narrow peak with Sr 2 0.27. 

3.1.4. R.m.s. values of the lift juctuations 

For the sake of comparison the r.m.s. values of the lift fluctuations (pL)4(Re) 
are plotted in figure 2 ( a )  together with CD(Re) and Sr(Re). The qualitative depen- 
dence of (CL)i(Re) is according to the curve CD(Re). This curve has a maximum 
value of (E); = 0.38 in the subcritical regime (Re x 5 x lo4), where CD(Re) shows 
a sudden increase. I n  this context i t  is interesting to note that the base pressure 
coefficient Cp,, ,  is minimal a t  approximately the same Reynolds number with 
CP,80(Re x 5 x lo4) = - 1.2(Roshko 1970).Theminimalr.m.s.valueamountsto0.02in 
the supercritical regime. At Re x 3.5 x lo6, where the broad maximum is formed in the 
spectrum (figure 3d), the r.m.5. value exhibits a slightly pronounced relative max- 
imum. As Re is increased further, the development to the narrow peak (transcritical) 
is coupled with a slightly decreasing r.m.s. value and an increasing Strouhal number. 

When interpreting these measurements, one has to  bear in mind that the present 
total force measurements integrate in spanwise direction over possible variations of 
sectional forces. Most of the investigations performed at very high Reynolds numbers 
obtained the forces by integrating a sectional pressure distribution. 

3.1.5. Probability density distributions and its moments 

I n  figures 4 and 5 two typical probability density distributions P(Ci)  are presented 
characteristic for the sub- and transcritical Reynolds-number ranges. The curves are 
normalized such that 

sP(C,) dCL = 1. 

For the sake of comparison the Gaussian probability distribution is included, because 
the deviation from the Gaussian distribution provides information about the nature 
of a process. The non-Gaussian effects are evident for example under close inspection 
of the tails of the measured probability density (figure 4). The probability that the 
amplitudes exceed the threshold C i  x f 2.8 is considerably smaller than is the case 
for a Gaussian process. 

The higher statistical moments skewness factor Sk and flatness factor Fl, 

which characterize P(CL) as well as the peak values of C;(t), are calculated and 
recorded in table 1. The values of Sk and F1, which are valid for example for a sine 
wave and a Gaussian process, are also included in table 1. An interpretation of these 
results will be given in the following discussion. 
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FIGURE 4. Probability density distribution of the lift fluctuations (Re = 5.5 x lo4, subcritical) 
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FIGURE 5. Probability density distribution of the lift fluctuations (Re = 7 . 1  x lo6, transcritical). 

3.2.  TheJine structure in the critical Reynolds number regime 

I n  the critical Reynolds-number regime the boundary-layer transition from laminar 
to turbulent flow is accompanied by a sudden increase of the Strouhal number (see 
e.g. Drescher 1956; Bearman 1969) and the occurrence of asymmetric flow states 
(Kraemer 1964; Bearman 1969; Achenbach & Heinecke 1981). By small increments 
of the wind-tunnel speed the fine structure of the critical Reynolds-number range was 
investigated. I n  figures 6 (c', b' and a') the drag F,(Re), the Strouhal number Sr(Re) 
and the lift coefficient C,(Re) are plotted against Reynolds number (p = const). The 
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State Re Sk FZ C&,,,, (r.m.s.) 

Subcritical 5.5 x 104 0.00 2.6 f 3  

Supercritical 3.5 x 105 0.01 
2.8 I :30” 
3.3 ( +4.4 

-4.0 
Upper transition 2.6 X 10’ -0.08 

Transcritical 7 .1  x 10‘ -0.02 2.8 

0 3.0 Gmssian - 

Sine - 

-4.0 I +3.8 
- 

0 1.5 k 4 2  

TABLE 1 .  Statistical moments skewness factor Sk, flatness factor FZ and peak values C i  for the 
individual Reynolds-number ranges 

unusual representation of figure 6(c’) (without any normalization) emphasizes the 
extreme of Fx( Re) and the fine structure of the critical range. Evident is the relative 
minimum FX(Re = 3.5 x lo5), which is a sharp boundary between the critical and the 
supercritical ranges. The maximum at F,(Re) = 2.8 x lo5 marks the end of the range 
where quasiperiodic lift fluctuations occur ; the typical spectrum is characterized by 
a single narrow peak (figure 3a). This maximum also marks the onset of wideband 
low-frequency fluctuations and an increase of the width of the peak in the spectrum 
GL( f ), while Re is increasing. 

As mentioned in $3.1.1 (see figure 2), two discontinuous transitions A and B were 
observed. After transition A, a bistable asymmetric flow state occurred, accompanied 
by a drop of F,, a steady lift ICLI x 1 (figure 6a’) and a jump of the Strouhal number 
to Sr = 0.3 (figure 6b’ ) .  This state is called bistable because there are two stable states 
corresponding to both possible signs of the lift force. This flow state with IC,I/C, x 2 
is stable for a small Reynolds-number range until the second transition B occurs. 
Transition B is characterized by a second drop of the drag F, to almost its half, a 
further jump of the Strouhal number to Xr = 0.48 and the abrupt disappearance of the 
steady lift C,. 

I n  figure 6 the individual stages of the flow in the critical regime are denoted by 
lower-case letters (a-f). The related power spectra for these individual stages are 
pictured in figures 7 (a-f). Both axes of the spectra are linear and no normalization 
was applied, so that the areas under the curves are proportional to the mean square 
of the lift fluctuations (the corresponding r.m.s. values appear in the individual 
captions of figure 7). Going step by step through the critical regime the following 
phenomena can be observed: as mentioned before, the maximum F,(Re = 2.8 x lo5) 
in figure 6(c‘) marks the onset of broadband low-frequency fluctuations, which are 
called critical fluctuations, corresponding to the terminology used for phase transitions. 
In  general, the occurrence of critical fluctuations indicates that  a state of a physical 
system becomw unstable. The shaded part of the spectra in figure 7 represents the 
critical fluctuations. Continuous development of the spectra GL(f) up to the critical 
point immediately before transition A (figure 7 b )  is as follows : to  the same extent as 
the peak becomes smaller and its width increases, the broadband low-frequency part 
of the spectrum increases (figure 7a, b) .  Immediately before transition A in the 
asymmetric bistable state, the spectrum (figures 7 b, g) is characterized by two peaks, 
which, according to their Strouhal numbers, are probably related to the sub- and 
supercritical states. Furthermore, the high intensity of the critical fluctuations 
indicate that the flow is unstable to  a high degree. I n  order to  emphasize this 
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FIGURE 6. Fine structure in the critical range (the lower-case letters denote the individual stages 
of the flow state); 0 ,  p = 6 bar; 0, p = 2 bar. (a’) Absolute value of the steady lift coefficient ]CJ. 
(b’) Strouhal number Sr =fD/um.  (c’) Drag force F,. 

important phenomenon of the occurrence of two peaks, a second spectrum of a 
different run is presented (figure 7g)  where the two peaks are more pronounced. At 
this first critical point the state of the flow is probably jumping randomly in time 
and is randomly distributed along the axis of the cylinder from the sub- to the 
supercritical state, which is indicated by the two small peaks. It is conceivable that 
the process of jumping between the two states causes the wideband low-frequency 
fluctuations, the critical fluctuations. At this point of high instability of the flow i t  
is sufficient in the experiment to wait until a perturbation of the flow itself is great 
enough to provoke transition A in the asymmetric flow state. This new state of the 
flow after transition A is stable, as can be concluded from the disappearance of the 
critical fluctuations (figure 7c)  and the occurrence of a rather narrow peak a t  Sr = 0.3. 
With increasing Reynolds number the peak becomes smaller and the critical 
fluctuations occur again (figures 7 d ,  e ) .  Immediately before transition B there is a 
similar situation as before transition A .  The peak has nearly vanished and the flow 
is unstable to a high degree. After transition B ,  the critical fluctuations have vanished 
and the mean flow field is symmetric again. 

In  figure 8 the power spectra of the lift @,(f) and drag fluctuations GD(f) are 
plotted for the bistable asymmetric state (stage c ) .  It is remarkable that in this case 
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FIGURE 7 .  Power spectra of the lift fluctuations for the individual stages a-fin figure 6 (the Strouhal 
numbers of the peaks are included). (a) Typical spectrum near the critical Re with critical 
fluctuations (shaded), (GL? = 0.091. (b)  At the 1st critical Re immediately before transition A ,  
(c";): = 0.062. (c) Asymmetric bistable state immediately after transition A ,  (GL)i = 0.044. (d )  The 
same state as in (c) with increased critical fluctuations as Re is slightly increased, (GL); = 0.045. 
( e )  A t  the 2nd critical Re immediately before transition B ,  (GL)+ = 0 .067 .3 )  Supercritical state 
immediabely after transition B (the critical fluctuations have vanished), (CL)t = 0.025. (9)  Stage 
as in ( b ) ,  Re slightly lower. 

the pronounced frequency of both components have the same value (Sr  = 0.33). It 
is conceivable that, regarding the time-dependent behaviour of both force components, 
the dominating vortices are those which are shed from the side where the boundary- 
layer transition has not yet occurred. I n  the case of symmetric flow separation, for 
example for subcritical Reynolds numbers, the dominant frequency of the drag 
fluctuations has double the value of the dominant frequency of the lift fluctuations. 

As is evident in figure 6, the speed in the wind tunnel is influenced by transitions 
A and B because of the fact that  the changes of the drag of the cylinder are not small 
enough compared with the drag of the entire closed wind tunnel. After transition A 
the Reynolds number is slightly decreased and after transition B slightly increased. 
As the speed of the fan of the wind tunnel is kept constant by the controlling system, 
the drop of the drag of the cylinder (transition B )  results in a small increase of the 
wind tunnel speed. After transition A the situation is more complicated. It is 
conceivable that the asymmetric flow leads to a slight impairment of the wind-tunnel 
performance, although the drag F, on the cylinder is reduced. On the other hand, 
this undesired effect is a sensitive proof that transition A exhibits hysteresis. With- 
out hysteresis the state of the flow would jump back to the state prior to transition A 
caused by the decreased wind-tunnel speed. 

The hysteresis effect is demonstrated for example for the drag force F, (figure 9). 
The transitions which occur with decreasing Reynolds number are denoted by a 
prime. It is obvious that, for decreasing Reynolds numbers Re$, the supercritical 
and bistable states can be maintained a t  lower Reynolds numbers than would be 
possible for increasing Reynolds numbers Re?. 

I n  figure 10 the hysteresis effects are illustrated by means of the power spectra. 
The spectra recorded a t  transitions A and B (increasing Reynolds number R e )  Ref 
are identical with figures 7 (f, e ,  b )  : they are shown as dotted lines. I n  the same figures 
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FIGURE 9. Hysteresis effects for transitions A and B (increasing Re?) and transition A’ and B’ 
(decreasing Re$) ; p = const = 6 bar. 

the spectra are plotted, which were recorded at transitions A’ and B’ with decreasing 
Reynolds number Re$. In  figure 10(a) the apparent shift of the peak to lower 
frequencies shows that the supercritical state can be maintained even at lower 
Reynolds numbers than would be possible for increasing Reynolds numbers Ref. The 
shift of the shedding frequency was caused by a corresponding decrease of the flow 
velocity u,. 

For interpretation of figures 10(b, c) with respect to hysteresis, it  is necessary to 
recall the sequence of the spectra in figure 7 and the related curve F,(Re) in figure 
9. Both figures illustrate the individual successive stages of the flow in the critical 
regime. A direct comparison of the related spectra - i.e. immediately before (with 
Ref) and immediately after the transitions (with Re$) -shows that the latter spectra 
belong to a stage previous to the former ones. 
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FIQURE 10. Power spectra immediately before and after the transitions (the corresponding Reynolds 
numbers are in figure 9). (a) ----, after transition B with Ref; -, before transition B’ with 
Re$. (6) ----, before transition B with Ref; -, after transition B with Re$. (c )  ---- before 
transition A with Ref; - after transition A’ with Re$. 

4. Discussion of the results 

4.1.1. The critical Reynolds-number range 
The explanation for the phenomena that occur lies in the behaviour of the 

boundary layer. The asymmetric flow and thus the steady lift in the critical range 
is caused by the fact that boundary-layer transition from laminar to turbulent has 
occurred on only one side of the cylinder. Thus a laminar separation bubble is formed 
as follows: the transition from laminar to turbulent flow occurs in the detached 
boundary layer just downstream from the separation point. After reattachment of 
the boundary layer on the back of the cylinder, the separation is turbulent. Thus the 

4.1. Discussion of the phenomena occurring in the transitional ranges 
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FIGURE 11. Schematic diagrams for subcritical bifurcations for transitions A and R (A’ and I?’), 
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FIGURE 12. Simplified sketch of the asymmetric flow state in the critical regime ( L  = lift, 
D = drag, St = turbulent separation, 8, = laminar separation). 
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critical Reynolds number is reached if the distance between the separation point and 
the location of the transition in the detached boundary layer is small enough to allow 
reattachment. Transition B from asymmetric to symmetric flow is due to the 
formation of a second bubble on the other side of the cylinder. 

The change from symmetric to asymmetric flow (transition A )  is accompanied by 
generation of circulation around the cylinder, which causes the steady lift. In other 
words the process of changing states (transition A )  generates the circulation. After the 
new state is established, the circulation remains constant (non-zero) in the mean. As 
a consequence of the circulation theorem, the rapid generation of the circulation must 
be accompanied by a starting vortex. The transition B can be explained in a similar 
manner. 

Apart from this physical explanation for the steady lift force, there are many 
indications that the observed phenomena are caused by hydrodynamic instability, 
which can be treated in a general sense as phase transitions between two states of 
order. For both transitions A and B the following behaviour was observed, which 
is typical for subcritical bifurcations : critical fluctuations before the transitions 
(Figures 7a, b,  d ,  e ) ;  the break of symmetry - which is at both transitions the sudden 
occurrence of the steady lift force (figure 6a’)-and finally the hysteresis effects 
(figures 9 and 10). In  figure 11 the bifurcation diagrams for both transitions A and 
B are sketched separately, because of the fact that the state of the flow before 
transition A and after transition B is quite different, as can be concluded from the 
jumps of the Strouhal number and the drops of drag coefficient CD. The parameter 
of stability is the Reynolds number at the abscissa, and the lift coefficient C, was 
chosen as the order parameter, which characterizes the flow field. Unstable states of 
the flow are indicated by dotted and stable states by solid lines. Remembering the 
sequence of the spectra of the individual stages in the critical range (figure 7)  the 
critical fluctuations occur when Re approaches Re,. If the critical point Re, is reached, 
the order parameter C, takes a discontinuous jump on one of both possible stable 
branches - this is the break of symmetry (C, + 0). Hysteresis is evident as transition 
A occurs at  Re, and transition A’ at the somewhat lower Reynolds number Re,,. A 
corresponding explanation is valid for transition B in the supercritical state. Prior 
to transition B we are on one of the two stable branches; if the boundary of stability 
is reached the steady lift abruptly vanishes and the state of the flow is symmetric 
again. As was demonstrated by means of the drag force (figure 9) and the spectra 
(figure 10a) the supercritical state can be maintained for a slightly decreased 
Reynolds number because of the hysteresis until transition B’ in the asymmetric state 
occurs at Re,. 

The following considerations are concerned with the process leading to the 
transitions : the boundary layer around the circular cylinder can be subdivided into 
two parts, which are separated in the mean by the stagnation line on the front of 
the cylinder. Although there is interaction between the two boundary layers, the 
transition on both sides at critical Reynolds numbers must not necessarily occur 
simultaneously. This supposition leads to the following speculations. Near the critical 
Reynolds number, the transition will be tripped by small perturbations, which is 
similar to a nucleation process typical for phase transitions in extended systems 
(Landauer 1978). Thus events in the microstructure of the flow can lead to changes 
in the macrostructure. A t  the critical point, the process leading to the transition in 
the detached boundary layer (free shear layer) will be initiated by perturbations or 
fluctuations, which are inherent in the boundary layer and the free stream. The 
occurrence of these perturbations is stochastic in space and time. The sign of the lift, 
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which characterizes the asymmetric flow, is dependent on the side where a perturbation 
sufficient to initiate the boundary-layer transition first occurs. The immediate 
formation of a one-sided bubble leads to steady circulation around the cylinder. This 
effect results in acceleration of the fluid on the side where the boundary-layer 
transition has occurred and in deceleration at the other side of the cylinder (figure 
12). Deceleration of the fluid delays the transition in this detached boundary layer 
and hence the formation of the bubble. This coupled occurrence of the development 
of a bubble on one side with the deceleration of the fluid on the other side (i.e. decrease 
of the Reynolds number of this boundary layer) probably causes stabilizing and fixing 
of the asymmetric flow state. This effect is only possible if there is a very low 
probability for simultaneous occurrence of perturbations on both sides, which would 
be able to initiate simultaneous formation of both bubbles. The asymmetric state is 
stable for a small ARe until the boundary layer, which is not yet reattached, becomes 
unstable again while Re is increasing. If the second critical point is reached the second 
transition occurs, accompanied by the formation of the second bubble. We suppose 
that the width of the range ARe where the asymmetric flow state is stable and the 
width of the hysteresis range approaches zero is additional parameters of stability 
such as for example the turbulence intensity of the free stream or the surface 
roughness are increased. 

4.1.2. The transitional regime from super- to transcritical Reynolds numbers 

As already mentioned, it is established that in the supercritical state two stable 
laminar separation bubbles occur which are responsible for the low drag coefficient 
(see e.g. Roshko 1961 ; Tani 1964; Achenbach 1968; Bearman 1969). Roshko suggests 
in a general sense that disappearance of the separation bubbles characterizes the 
upper transition from super- to transcritical Reynolds numbers. Furthermore, i t  is 
possible that the stability and the dynamic behaviour of the separation bubbles are 
responsible for the occurring lifts (both signs were observed) and the pronounced 
maximum in the spectra a t  Sr x 0.1. The lift can be caused by a one-sided bubble and 
the pronounced maximum in the spectrum by a pulsating bubble. 

It is conceivable that in this transitional range the flow around the cylinder passes 
through many successive phases of instability as in the critical regime until the 
transcritical regime is reached. These many individual transitions may be close 
together, making experimental investigation rather difficult. Finally it can be stated 
that the multivaluedness of the measured quantities Sor lo6 5 Re 5 2 x lo6 is caused 
by different states of the flow. 

4.2. Interpretation of time functions and probability densities 

Figures 1 3 ( a 4 )  show four time functions of the lift fluctuations typical for the 
individual Reynolds-number ranges. All amplitudes are normalized to their corres- 
ponding r.m.s. value and the dotted lines are equivalent to 3(cL);. The time axis 
was scaled with the inverse Strouhal number 1/Sr = Tu, /D;  thus all time functions 
are directly comparable with respect to their characteristic time T .  The time function 
in figure 13(c) taken a t  Re = 2.6 x los (upper transition) is dominated by random 
fluctuations of the lift. This visual impression is confirmed by the corresponding 
probability density, which is nearly Gaussian. The time functions of the sub-, super- 
and transcritical ranges look like sine waves, which are randomly modulated in 
amplitude and frequency. Furthermore, the appropriate probability densities (figures 
4 and 5) and their moments (table 1) deviate more or less from Gaussian, particularly 
in the case of subcritical Reynolds numbers. Under certain conditions, as mentioned 
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in 4 3.1.5, deviation from the Gaussian distribution allows conclusions concerning the 
physical nature of a process. The Central Limit Theorem can be reversed in a 
qualitative sense, such that deviation from the Gaussian distribution is an indication 
for cooperative behaviour (Haken 1982). Forces acting on the cylinder in crossflow 
are the result of a summation of many individual contributions (forces are integral 
values). In  the case of statistical independence of the individual contributions, the 
summed value (the total force) obeys the Gaussian distribution provided that the 
number of contributions n is high (n-t a). This is a consequence of the Central Limit 
Theorem. On the other hand, the deviation from the Gaussian distribution indicates 
that the individual contributions are no longer independent but are correlated. Based 
on these considerations, the flow field around the cylinder in crossflow can be divided 
along its span into many subsystems. The instantaneous total force acting on the 
cylinder is then the result of the more or less cooperative behaviour of these individual 
subsystems, which differ slightly from each other in frequency and amplitude. Strong 
spanwise coherence leads to a wave train with peak values up to f3 r.m.s. in the 
subcritical state and about +4 r.m.5. in the super- and transcritical states. Small 
amplitudes of C i  are the consequence of low coherence. In  this context i t  is interesting 
to refer to figure 14, where for a subcritical Reynolds number the lift CL and the drag 
fluctuations CL are illustrated. It is evident that the modulation frequency of the 
amplitude of the lift fluctuations is strongly correlated with the very low-frequency 
fluctuations of the drag. In  other words: if the amplitudes of the lift fluctuations are 
increasing, i.e. the coherence along the span of the cylinder increases, then the drag 
also increases and vice versa. The higher-frequency, which is obvious in drag 
fluctuations, has double the value of the shedding frequency ; thus the spectrum 
contains a wide-band low-frequency part and a pronounced maximum a t  Sr = 0.4. 

A consequence of these findings is that, up to a certain degree, a separation between 
the non-random and the random processes is possible. In the subcritical state, for 
example, the non-random process may be represented by a carrier frequency with 
Sr = 0.2, while the random processes are represented by the amplitude modulation 
of the carrier frequency and the wideband low-frequency fluctuations of the drag 
respectively. 
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